Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Front Immunol ; 14: 1166924, 2023.
Article in English | MEDLINE | ID: covidwho-20231128

ABSTRACT

Introduction: The COVID-19 pandemic illustrates the need for serology diagnostics with improved accuracy. While conventional serology based on recognition of entire proteins or subunits thereof has made significant contribution to the antibody assessment space, it often suffers from sub-optimal specificity. Epitope-based, high-precision, serology assays hold potential to capture the high specificity and diversity of the immune system, hence circumventing the cross-reactivity with closely related microbial antigens. Methods: We herein report mapping of linear IgG and IgA antibody epitopes of the SARS-CoV-2 Spike (S) protein in samples from SARS-CoV-2 exposed individuals along with certified SARS-CoV-2 verification plasma samples using peptide arrays. Results: We identified 21 distinct linear epitopes. Importantly, we showed that pre-pandemic serum samples contain IgG antibodies reacting to the majority of protein S epitopes, most likely as a result of prior infection with seasonal coronaviruses. Only 4 of the identified SARS-CoV-2 protein S linear epitopes were specific for SARS-CoV-2 infection. These epitopes are located at positions 278-298 and 550-586, just proximal and distal to the RBD, as well as at position 1134-1156 in the HR2 subdomain and at 1248-1271 in the C-terminal subdomain of protein S. To substantiate the applicability of our findings, we tested three of the high-accuracy protein S epitopes in a Luminex assay, using a certified validation plasma sample set from SARS-CoV-2 infected individuals. The Luminex results were well aligned with the peptide array results, and correlated very well with in-house and commercial immune assays for RBD, S1 and S1/S2 domains of protein S. Conclusion: We present a comprehensive mapping of linear B-cell epitopes of SARS-CoV-2 protein S, that identifies peptides suitable for a precision serology assay devoid of cross-reactivity. These results have implications for development of highly specific serology test for exposure to SARS-CoV-2 and other members of the coronaviridae family, as well as for rapid development of serology tests for future emerging pandemic threats.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2 , Epitopes, B-Lymphocyte , Protein S , Spike Glycoprotein, Coronavirus , Pandemics , Antibodies, Viral , Immunoglobulin G , COVID-19 Testing
2.
Clin Exp Immunol ; 2023 Apr 18.
Article in English | MEDLINE | ID: covidwho-2299220

ABSTRACT

Antigen-specific class-switched antibodies are detected at the same time or even before IgM in serum of non-vaccinated individuals infected with SARS-CoV-2. These derive from the first wave of plasmablasts formed. The phenotype and specificity of plasmablasts can reveal information about early B cell activation. Here we have analyzed B cells and plasmablasts circulating in blood of COVID-19 patients not previously exposed to SARS-CoV-2 during and after disease. We find that during infection with the original Wuhan strain, plasmablasts in blood produce IgA1, IgG1 and IgM, and that most express CCR10 and integrin ß1, only some integrin ß7, while the majority lack CCR9. Plasmablast-secreted antibodies are reactive to the Spike (S) and Nucleocapsid (N) proteins of the Wuhan strain as well as later variants of concern, but also bind S proteins from endemic and non-circulating betacoronaviruses. In contrast, after recovery, antibodies produced from memory B cells target variants of SARS-CoV-2 and SARS-CoV-1 but compared to previously non-infected individuals do not show increased binding to endemic coronaviruses. This suggests that the early antibody response to a large extent stems from pre-existing cross-reactive class-switched memory B cells, but that that although newly formed memory cells target the novel SARS-CoV-2 virus the numbers of broadly cross-reactive memory B cells do not increase extensively. The observations give insight into the role of pre-existing memory B cells in early antibody responses to novel pathogens and may explain why class-switched antibodies are detected early in serum of COVID-19 patients.

3.
JCI Insight ; 2022 Nov 29.
Article in English | MEDLINE | ID: covidwho-2235313

ABSTRACT

Understanding persistence and evolution of B cell clones after COVID-19 infection and vaccination is crucial for predicting responses against emerging viral variants and optimizing vaccines. Here, we collected longitudinal samples from severe COVID-19 patients every third to seventh day during hospitalization and every third month after recovery. We profiled the antigen-specific immune cell dynamics by combining single cell RNA-Seq, Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE)-Seq, B cell receptor (BCR)-Seq with oligo-tagged antigen baits. While the proportion of Spike Receptor Binding Domain-specific memory B cells (MBC) increased from 3 months after infection, the other Spike- and Nucleocapsid-specific B cells remained constant. All patients showed ongoing class switching and sustained affinity maturation of antigen specific cells, which was not significantly increased early after vaccine. B cell analysis revealed a polyclonal response with limited clonal expansion; nevertheless, some clones detected during hospitalization, as plasmablasts, persisted for up to one year, as MBC. Monoclonal antibodies derived from persistent B cell families increased their binding and neutralization breadth and started recognizing viral variants by 3 months after infection. Overall, our findings provide important insights into the clonal evolution and dynamics of antigen specific B cell responses in longitudinally sampled COVID-19 infected patients.

4.
J Med Virol ; 2022 Sep 10.
Article in English | MEDLINE | ID: covidwho-2231465

ABSTRACT

Coronavirus disease 2019 (COVID-19) is associated with autoimmune features and autoantibody production in a small subset of the population. Pre-existing neutralizing antitype I interferons (IFNs) autoantibodies are related to the severity of COVID-19. Plasma levels of IgG and IgM against 12 viral antigens and 103 self-antigens were evaluated using an antibody protein array in patients with severe/critical or mild/moderate COVID-19 disease and uninfected controls. Patients exhibited increased IgGs against Severe acute respiratory syndrome coronavirus-2 proteins compared to controls, but no difference was observed in the two patient groups. 78% autoreactive IgGs and 93% autoreactive IgMs were increased in patients versus controls. There was no difference in the plasma levels of anti-type I IFN autoantibodies or neutralizing anti-type I IFN activity of plasma samples from the two patient groups. Increased anti-type I IFN IgGs were correlated with higher lymphocyte accounts, suggesting a role of nonpathogenic autoantibodies. Notably, among the 115 antibodies tested, only plasma levels of IgGs against human coronavirus (HCOV)-229E and HCOV-NL63 spike proteins were associated with mild disease outcome. COVID-19 was associated with a bystander polyclonal autoreactive B cell activation, but none of the autoantibody levels were linked to disease severity. Long-term humoral immunity against HCOV-22E and HCOV-NL63 spike protein was associated with mild disease outcome. Understanding the mechanism of life-threatening COVID-19 is critical to reducing mortality and morbidity.

5.
Genome Med ; 14(1): 139, 2022 12 14.
Article in English | MEDLINE | ID: covidwho-2162412

ABSTRACT

BACKGROUND: The COVID-19 pandemic, which has a prominent social and economic impact worldwide, shows a largely unexplained male bias for the severity and mortality of the disease. Loss of chromosome Y (LOY) is a risk factor candidate in COVID-19 due to its prior association with many chronic age-related diseases, and its impact on immune gene transcription. METHODS: Publicly available scRNA-seq data of PBMC samples derived from male patients critically ill with COVID-19 were reanalyzed, and LOY status was added to the annotated cells. We further studied LOY in whole blood for 211 COVID-19 patients treated at intensive care units (ICU) from the first and second waves of the pandemic. Of these, 139 patients were subject to cell sorting for LOY analysis in granulocytes, low-density neutrophils (LDNs), monocytes, and PBMCs. RESULTS: Reanalysis of available scRNA-seq data revealed LDNs and monocytes as the cell types most affected by LOY. Subsequently, DNA analysis indicated that 46%, 32%, and 29% of critically ill patients showed LOY above 5% cut-off in LDNs, granulocytes, and monocytes, respectively. Hence, the myeloid lineage that is crucial for the development of severe COVID-19 phenotype is affected by LOY. Moreover, LOY correlated with increasing WHO score (median difference 1.59%, 95% HDI 0.46% to 2.71%, p=0.025), death during ICU treatment (median difference 1.46%, 95% HDI 0.47% to 2.43%, p=0.0036), and history of vessel disease (median difference 2.16%, 95% HDI 0.74% to 3.7%, p=0.004), among other variables. In 16 recovered patients, sampled during ICU stay and 93-143 days later, LOY decreased significantly in whole blood and PBMCs. Furthermore, the number of LDNs at the recovery stage decreased dramatically (median difference 76.4 per 10,000 cell sorting events, 95% HDI 55.5 to 104, p=6e-11). CONCLUSIONS: We present a link between LOY and an acute, life-threatening infectious disease. Furthermore, this study highlights LOY as the most prominent clonal mutation affecting the myeloid cell lineage during emergency myelopoiesis. The correlation between LOY level and COVID-19 severity might suggest that this mutation affects the functions of monocytes and neutrophils, which could have consequences for male innate immunity.


Subject(s)
COVID-19 , Chromosomes, Human, Y , Humans , Male , Leukocytes, Mononuclear , Pandemics , Critical Illness , COVID-19/genetics , Risk Factors
6.
Gut Pathog ; 14(1): 35, 2022 Aug 20.
Article in English | MEDLINE | ID: covidwho-2002220

ABSTRACT

BACKGROUND: Little is known of possible selection and replication of SARS-CoV-2 in the intestines and if viral load in feces is associated with severity of disease. Therefore, sequence variations of the spike region in strains collected from feces and nasopharynx (NPH) from the same patients were compared. It was also investigated whether viral load in feces related to severity of COVID-19 in hospitalized patients. RESULTS: SARS-CoV-2 RNA was found in 88 (79%) fecal samples from 112 patients. The complete spike region could be sequenced in 15 fecal and 14 NPH samples. Fourteen Alpha-variants and one Beta-variant of SARS-CoV-2 were identified. The majority of the viral genetic variants (viral populations) in two fecal samples, but none in NPH, had a reversion of the H69/V70 amino acid deletion normally seen in the Alpha variants. Nine fecal samples contained up to nine minority variants, each which may constitute a separate viral population. Five NPH samples had one genetic variant each, and one NPH sample contained nine minority populations of SARS-CoV-2 spike genes. CONCLUSIONS: The higher genomic diversity of SARS-CoV-2 in feces compared to NPH, and the reversion of the H69/V70 deletion in Alpha variants from feces indicate a selection of viral strains and replication of SARS-CoV-2 in the gastrointestinal tract.

7.
Infect Dis (Lond) ; 54(10): 703-712, 2022 10.
Article in English | MEDLINE | ID: covidwho-1895733

ABSTRACT

BACKGROUND: The viral kinetics of SARS-CoV-2 has been considered clinically important. While remdesivir and corticosteroids are recommended for COVID-19 patients requiring oxygen support, there is a limited number of published reports on viral kinetics in hospitalised patients with COVID-19 treated with remdesivir or corticosteroids. METHODS: We conducted a retrospective study by collecting longitudinal samples from the nasopharynx/throat of 123 hospitalised patients (median age 55 years, 74% male) with COVID-19, to evaluate the effects of remdesivir and corticosteroid treatment on viral RNA levels. The subjects were divided into four groups: those receiving remdesivir (n = 25), betamethasone (n = 41), both (n = 15), or neither (n = 42). Time to viral RNA clearance was analysed using Kaplan-Meier plots, categorical data were analysed using Fisher's exact test, and Kruskal-Wallis for continuous data. Viral RNA decline rate was analysed using a mixed effect model. RESULTS: We found no significant difference in SARS-CoV-2 RNA decline rate or time to SARS-CoV-2 RNA clearance between the groups. Moreover, clinical status at baseline was not correlated with time to viral clearance. CONCLUSIONS: Since SARS-CoV-2 RNA kinetics was not affected by treatment, repeated sampling from the upper respiratory tract cannot be used to evaluate treatment response.


Subject(s)
COVID-19 Drug Treatment , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , Betamethasone/therapeutic use , Female , Humans , Male , Middle Aged , Nasopharynx , RNA, Viral , Retrospective Studies , SARS-CoV-2
8.
Mol Immunol ; 145: 17-26, 2022 05.
Article in English | MEDLINE | ID: covidwho-1783651

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes mild symptoms in the majority of infected individuals, yet in some cases it leads to a life-threatening condition. Determination of early predictive biomarkers enabling risk stratification for coronavirus disease 2019 (COVID-19) patients can inform treatment and intervention strategies. Herein, we analyzed whole blood samples obtained from individuals infected with SARS-CoV-2, varying from mild to critical symptoms, approximately one week after symptom onset. In order to identify blood-specific markers of disease severity status, a targeted expression analysis of 143 immune-related genes was carried out by dual-color reverse transcriptase multiplex ligation-dependent probe amplification (dcRT-MLPA). The clinically well-defined subgroups of COVID-19 patients were compared with healthy controls. The transcriptional profile of the critically ill patients clearly separated from that of healthy individuals. Moreover, the number of differentially expressed genes increased by severity of COVID-19. It was also found that critically ill patients can be distinguished by reduced peripheral blood expression of several genes, which most likely reflects the lower lymphocyte counts. There was a notable predominance of IFN-associated gene expression in all subgroups of COVID-19, which was most profound in critically ill patients. Interestingly, the gene encoding one of the main TNF-receptors, TNFRS1A, had selectively lower expression in mild COVID-19 cases. This report provides added value in understanding COVID-19 disease, and shows potential of determining early immune transcript signatures in the blood of patients with different disease severity. These results can guide further explorations to uncover mechanisms underlying immunity and immunopathology in COVID-19.


Subject(s)
COVID-19 , COVID-19/genetics , Critical Illness , Gene Expression , Humans , SARS-CoV-2
9.
Infect Dis (Lond) ; 54(7): 508-513, 2022 07.
Article in English | MEDLINE | ID: covidwho-1740718

ABSTRACT

BACKGROUND: The aim of this study was to compare the outcome of coronavirus disease 2019 (COVID-19) in hospitalised patients with chronic obstructive pulmonary disease (COPD) with the outcome in matched COVID-19 patients without COPD. METHODS: Sixty-three COPD patients hospitalised for acute COVID-19 from March through August 2020 were retrospectively identified and 63 hospitalised COVID-19 patients without COPD were selected and matched for age, gender and month of hospital admission. RESULTS: COPD patients had a higher rate of comorbidities, especially cardiovascular disease, and a trend towards a higher 30-day mortality than control patients (35% vs. 22%). In the COPD group, high Charlson comorbidity index (p = 0.03) and previous cerebrovascular disease (p = 0.04) were associated with 30-day mortality in univariate analysis. Inhaled corticosteroids maintenance therapy was not associated with lower mortality. CONCLUSION: COPD patients hospitalised for acute COVID-19 disease had significantly more comorbidities and a high risk of severe outcome and death within 30 days. Comorbidity, especially cardiovascular diseases, was associated with mortality among COPD patients.


Subject(s)
COVID-19 , Cardiovascular Diseases , Pulmonary Disease, Chronic Obstructive , COVID-19/epidemiology , Cardiovascular Diseases/complications , Cardiovascular Diseases/epidemiology , Comorbidity , Humans , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/epidemiology , Retrospective Studies , SARS-CoV-2
10.
Alzheimer's & Dementia ; 17(S5):e057889, 2021.
Article in English | Wiley | ID: covidwho-1589188

ABSTRACT

Background Neurologic manifestations are well-recognized features of coronavirus disease 2019 (COVID-19). However, the longitudinal association of biomarkers reflecting CNS impact and neurological symptoms is not known. We wished to determine whether plasma biomarkers of CNS injury were associated with neurologic sequelae after COVID-19. Method Patients with confirmed acute COVID-19 were studied prospectively. Neurological symptoms were recorded during the acute phase of the disease and at six months follow-up, and blood samples were collected longitudinally. Healthy age-matched individuals were included as controls. We analyzed plasma concentrations of neurofilament light-chain (NfL), glial fibrillary acidic protein (GFAp), and growth differentiation factor 15 (GDF-15). Result We recruited 100 patients with mild (n = 24), moderate (n = 28), and severe (n = 48) COVID-19 who were followed for a median of (IQR) 225 (187?262) days. In the acute phase, patients with severe COVID-19 had higher concentrations of NfL than all other groups (all p < 0.001) and higher GFAp than controls (p < 0.001). GFAp was also significantly increased in moderate disease (p < 0.05) compared with controls. NfL (r = 0.53, p < 0.001) and GFAp (r = 0.39, p < 0.001) correlated with GDF-15 during the acute phase. After six months, NfL and GFAp concentrations had normalized, with no persisting group differences. Despite this, 50 patients reported persistent neurological symptoms, most commonly included fatigue (n = 40), ?brain-fog? (n = 29), and changes in cognition (n = 25). We found no relation between persistent neurological symptoms and CNS injury biomarkers in the acute phase. Conclusion The normalization of CNS injury biomarkers in all individuals, regardless of previous disease severity or persisting neurological symptoms, indicate that post-acute COVID-19 neurological sequelae are not accompanied by ongoing CNS injury. Although injury biomarkers commonly increase in severe acute COVID-19, further investigations into the causes of post-infectious sequelae are needed.

12.
Am J Transplant ; 22(4): 1245-1252, 2022 04.
Article in English | MEDLINE | ID: covidwho-1550801

ABSTRACT

Solid organ transplant recipients (SOTRs) are on lifelong immunosuppression, which may interfere with adaptive immunity to COVID-19. The data on dynamics and duration of antibody response in SOTRs are limited. This longitudinal study examined the longevity of both anti-spike (S)- and anti-nucleocapsid (N)-specific IgG antibodies after COVID-19 in SOTRs compared to matched immunocompetent persons. SOTRs (n = 65) were matched with controls (n = 65) for COVID-19 disease severity, age, and sex in order of priority. Serum-IgG antibodies against N and S antigens of SARS-CoV-2 were analyzed. At 1 and 9 months after COVID-19, anti-S-IgG detectability decreased from 91% to 82% in SOTRs versus 100% to 95% in controls, whereas the anti-N-IgG decreased from 63% to 29% in SOTRs versus 89% to 46% in controls. A matched paired analysis showed SOTRs having significantly lower levels of anti-N-IgG at all time points (1 month p = .007, 3 months p < .001, 6 months p = .019, and 9 months p = .021) but not anti-S-IgG at any time points. A mixed-model analysis confirmed these findings except for anti-S-IgG at 1 month (p = .005) and identified severity score as the most important predictor of antibody response. SOTRs mount comparable S-specific, but not N-specific, antibody responses to SARS-CoV-2 infection compared to immunocompetent controls.


Subject(s)
COVID-19 , Organ Transplantation , Antibodies, Viral , Humans , Longitudinal Studies , SARS-CoV-2 , Transplant Recipients
13.
Front Immunol ; 12: 750448, 2021.
Article in English | MEDLINE | ID: covidwho-1526769

ABSTRACT

Background: The risk of SARS-CoV-2 infection among health care workers (HCWs) is a concern, but studies that conclusively determine whether HCWs are over-represented remain limited. Furthermore, methods used to confirm past infection vary and the immunological response after mild COVID-19 is still not well defined. Method: 314 HCWs were recruited from a Swedish Infectious Diseases clinic caring for COVID-19 patients. IgG antibodies were measured using two commercial assays (Abbot Architect nucleocapsid (N)-assay and YHLO iFlash-1800 N and spike (S)-assays) at five time-points, from March 2020 to January 2021, covering two pandemic waves. Seroprevalence was assessed in matched blood donors at three time-points. More extensive analyses were performed in 190 HCWs in September/October 2020, including two additional IgG-assays (DiaSorin LiaisonXL S1/S2 and Abbot Architect receptor-binding domain (RBD)-assays), neutralizing antibodies (NAbs), and CD4+ T-cell reactivity using an in-house developed in vitro whole-blood assay based on flow cytometric detection of activated cells after stimulation with Spike S1-subunit or Spike, Membrane and Nucleocapsid (SMN) overlapping peptide pools. Findings: Seroprevalence was higher among HCWs compared to sex and age-matched blood donors at all time-points. Seropositivity increased from 6.4% to 16.3% among HCWs between May 2020 and January 2021, compared to 3.6% to 11.9% among blood donors. We found significant correlations and high levels of agreement between NAbs and all four commercial IgG-assays. At 200-300 days post PCR-verified infection, there was a wide variation in sensitivity between the commercial IgG-assays, ranging from <30% in the N-assay to >90% in the RBD-assay. There was only moderate agreement between NAbs and CD4+ T-cell reactivity to S1 or SMN. Pre-existing CD4+ T-cell reactivity was present in similar proportions among HCW who subsequently became infected and those that did not. Conclusions: HCWs in COVID-19 patient care in Sweden have been infected with SARS-CoV-2 at a higher rate compared to blood donors. We demonstrate substantial variation between different IgG-assays and propose that multiple serological targets should be used to verify past infection. Our data suggest that CD4+ T-cell reactivity is not a suitable measure of past infection and does not reliably indicate protection from infection in naive individuals.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , COVID-19/immunology , Immunity/immunology , Immunoglobulin G/immunology , SARS-CoV-2/immunology , Adult , Aged , Female , Follow-Up Studies , Health Personnel , Humans , Male , Middle Aged , Pandemics/prevention & control , Seroepidemiologic Studies , Sweden , Young Adult
15.
J Med Virol ; 93(9): 5614-5617, 2021 09.
Article in English | MEDLINE | ID: covidwho-1363675

ABSTRACT

The severity of disease of Covid-19 is highly variable, ranging from asymptomatic to critical respiratory disease and death. Potential cross-reactive immune responses between SARS-CoV-2 and endemic coronavirus (eCoV) may hypothetically contribute to this variability. We herein studied if eCoV nucleoprotein (N)-specific antibodies in the sera of patients with mild or severe Covid-19 are associated with Covid-19 severity. There were comparable levels of eCoV N-specific antibodies early and during the first month of infection in Covid-19 patients with mild and severe symptoms, and healthy SARS-CoV-2-negative subjects. These results warrant further studies to investigate the potential role of eCoV-specific antibodies in immunity to SARS-CoV-2 infection.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Nucleoproteins/immunology , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , COVID-19/blood , COVID-19 Serological Testing , Cross Reactions , Female , Humans , Male , Middle Aged , Severity of Illness Index , Sweden , Young Adult
16.
EBioMedicine ; 70: 103512, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1330766

ABSTRACT

BACKGROUND: Neurologic manifestations are well-recognized features of coronavirus disease 2019 (COVID-19). However, the longitudinal association of biomarkers reflecting CNS impact and neurological symptoms is not known. We sought to determine whether plasma biomarkers of CNS injury were associated with neurologic sequelae after COVID-19. METHODS: Patients with confirmed acute COVID-19 were studied prospectively. Neurological symptoms were recorded during the acute phase of the disease and at six months follow-up, and blood samples were collected longitudinally. Healthy age-matched individuals were included as controls. We analysed plasma concentrations of neurofilament light-chain (NfL), glial fibrillary acidic protein (GFAp), and growth differentiation factor 15 (GDF-15). FINDINGS: One hundred patients with mild (n = 24), moderate (n = 28), and severe (n = 48) COVID-19 were followed for a median (IQR) of 225 (187-262) days. In the acute phase, patients with severe COVID-19 had higher concentrations of NfL than all other groups (all p < 0·001), and higher GFAp than controls (p < 0·001). GFAp was also significantly increased in moderate disease (p < 0·05) compared with controls. NfL (r = 0·53, p < 0·001) and GFAp (r = 0·39, p < 0·001) correlated with GDF-15 during the acute phase. After six months, NfL and GFAp concentrations had normalized, with no persisting group differences. Despite this, 50 patients reported persistent neurological symptoms, most commonly fatigue (n = 40), "brain-fog" (n = 29), and changes in cognition (n = 25). We found no correlation between persistent neurological symptoms and CNS injury biomarkers in the acute phase. INTERPRETATION: The normalization of CNS injury biomarkers in all individuals, regardless of previous disease severity or persisting neurological symptoms, indicates that post COVID-19 neurological sequelae are not accompanied by ongoing CNS injury. FUNDING: The Swedish State Support for Clinical Research, SciLifeLab Sweden, and the Knut and Alice Wallenberg Foundation have provided funding for this project.


Subject(s)
Astrocytes/pathology , Astrocytes/virology , COVID-19/pathology , COVID-19/virology , SARS-CoV-2/pathogenicity , Aged , Astrocytes/metabolism , Biomarkers/blood , Biomarkers/metabolism , COVID-19/blood , COVID-19/metabolism , Disease Progression , Female , Follow-Up Studies , Glial Fibrillary Acidic Protein/metabolism , Humans , Longitudinal Studies , Male , Middle Aged , Neurofilament Proteins/metabolism , Neurons/metabolism , Neurons/pathology , Neurons/virology , Sweden
17.
Sci Rep ; 11(1): 6357, 2021 03 18.
Article in English | MEDLINE | ID: covidwho-1142469

ABSTRACT

The recent SARS-CoV-2 pandemic manifests itself as a mild respiratory tract infection in most individuals, leading to COVID-19 disease. However, in some infected individuals, this can progress to severe pneumonia and acute respiratory distress syndrome (ARDS), leading to multi-organ failure and death. This study explores the proteomic differences between mild, severe, and critical COVID-19 positive patients to further understand the disease progression, identify proteins associated with disease severity, and identify potential therapeutic targets. Blood protein profiling was performed on 59 COVID-19 mild (n = 26), severe (n = 9) or critical (n = 24) cases and 28 controls using the OLINK inflammation, autoimmune, cardiovascular and neurology panels. Differential expression analysis was performed within and between disease groups to generate nine different analyses. From the 368 proteins measured per individual, more than 75% were observed to be significantly perturbed in COVID-19 cases. Six proteins (IL6, CKAP4, Gal-9, IL-1ra, LILRB4 and PD-L1) were identified to be associated with disease severity. The results have been made readily available through an interactive web-based application for instant data exploration and visualization, and can be accessed at https://phidatalab-shiny.rosalind.kcl.ac.uk/COVID19/ . Our results demonstrate that dynamic changes in blood proteins associated with disease severity can potentially be used as early biomarkers to monitor disease severity in COVID-19 and serve as potential therapeutic targets.


Subject(s)
Biomarkers/blood , COVID-19/blood , Central Nervous System Diseases/virology , Proteome , Aged , COVID-19/complications , Case-Control Studies , Cohort Studies , Female , Gene Expression Profiling , Gliosis/virology , Humans , Male , Middle Aged , Nerve Tissue Proteins/blood
18.
J Infect Dis ; 223(1): 15-18, 2021 01 04.
Article in English | MEDLINE | ID: covidwho-1066341

ABSTRACT

This study reports longitudinal viral RNA loads from the nasopharynx/throat in patients with mild and severe/critical coronavirus disease 2019 (COVID-19). We also investigated whether the duration of symptoms correlated with the duration of viral RNA shedding. A total of 56 patients were included. The highest viral loads occurred early after onset of symptoms. Neither the viral RNA loads in the upper respiratory tract nor the time to viral RNA clearance differed between patients with mild or severe/critical disease. There was a moderate correlation between number of days with symptoms and number of days with viral RNA shedding in patients with mild COVID-19.


Subject(s)
COVID-19/diagnosis , RNA, Viral/analysis , Viral Load , Virus Shedding , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Nasopharynx/virology , Pharynx/virology , Sweden , Young Adult
19.
Neurology ; 96(2): e294-e300, 2021 01 12.
Article in English | MEDLINE | ID: covidwho-1028474

ABSTRACT

OBJECTIVE: To explore whether hospitalized patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and neurologic symptoms have evidence of CNS infection, inflammation, and injury using CSF biomarker measurements. METHODS: We assessed CSF SARS-CoV-2 RNA along with CSF biomarkers of intrathecal inflammation (CSF white blood cell count, neopterin, ß2-microglobulin, and immunoglobulin G index), blood-brain barrier integrity (albumin ratio), and axonal injury (CSF neurofilament light chain protein [NfL]) in 6 patients with moderate to severe coronavirus disease 2019 (COVID-19) and neurologic symptoms who had undergone a diagnostic lumbar puncture. Neurologic symptoms and signs included features of encephalopathies (4 of 6), suspected meningitis (1 of 6), and dysgeusia (1 of 6). SARS-CoV-2 infection was confirmed by real-time PCR analysis of nasopharyngeal swabs. RESULTS: SARS-CoV-2 RNA was detected in the plasma of 2 patients (cycle threshold [Ct] value 35.0-37.0) and in CSF at low levels (Ct 37.2, 38.0, 39.0) in 3 patients in 1 but not in a second real-time PCR assay. CSF neopterin (median 43.0 nmol/L) and ß2-microglobulin (median 3.1 mg/L) were increased in all. Median immunoglobulin G index (0.39), albumin ratio (5.35), and CSF white blood cell count (<3 cells/µL) were normal in all, while CSF NfL was elevated in 2 patients. CONCLUSION: Our results in patients with COVID-19 and neurologic symptoms suggest an unusual pattern of marked CSF inflammation in which soluble markers were increased but white cell response and other immunologic features typical of CNS viral infections were absent. While our initial hypothesis centered on CNS SARS-CoV-2 invasion, we could not convincingly detect SARS-CoV-2 as the underlying driver of CNS inflammation. These features distinguish COVID-19 CSF from other viral CNS infections and raise fundamental questions about the CNS pathobiology of SARS-CoV-2 infection.


Subject(s)
COVID-19/cerebrospinal fluid , COVID-19/complications , Nervous System Diseases/cerebrospinal fluid , Nervous System Diseases/etiology , SARS-CoV-2/isolation & purification , Adult , Aged , Aged, 80 and over , Biomarkers/cerebrospinal fluid , Blood-Brain Barrier/diagnostic imaging , Blood-Brain Barrier/metabolism , COVID-19/diagnostic imaging , Female , Humans , Male , Middle Aged , Nervous System Diseases/diagnostic imaging
20.
BMC Infect Dis ; 20(1): 942, 2020 Dec 10.
Article in English | MEDLINE | ID: covidwho-968990

ABSTRACT

BACKGROUND: The COVID-19 pandemic, caused by the coronavirus SARS-CoV-2, is rapidly spreading worldwide. There is limited information about prognostic markers that could help clinicians to identify COVID-19 patients with a poor prognosis. Serum levels of the immune activation marker neopterin has shown to be of prognostic value in patients with SARS. The aim of this study was to investigate whether serum neopterin is associated with the severity of COVID-19. METHODS: We included 34 patients with confirmed COVID-19 between March 3 and March 30, 2020. Fifteen patients had mild disease and did not require hospitalization, whereas 19 patients developed severe COVID-19 requiring intensive care. Concentrations of serum neopterin, tryptophan, and kynurenine were measured at and repeatedly after inclusion. RESULTS: We found a more than two-fold higher mean concentration of neopterin in severely ill patients (mean value 42.0 nmol/L (SD 18.2)) compared to patients with mild symptoms (16.9 nmol/L (SD 11.0)). All of the severe cases had elevated neopterin concentrations (> 9.1 nmol/L) at the initial sampling with values ranging from 17.2 to 86.7 nmol/L. In comparison, 10 of 15 patients with mild disease had neopterin levels above 9.1 nmol/L, with concentrations in the range from 4.9 to 31.6 nmol/L. Neopterin levels gradually decreased during the course of COVID-19, but severe cases maintained elevated levels for a longer period. Moreover, lower levels of tryptophan and higher levels of kynurenine, indicating an increased tryptophan catabolism, were seen in the group with severe cases. CONCLUSIONS: In conclusion, we found that serum neopterin levels are associated with the severity of COVID-19. Our findings suggest that neopterin could be used as a prognostic marker, but further studies are needed to elucidate how it can be used in the clinic.


Subject(s)
COVID-19/blood , Neopterin/blood , Adult , Aged , Biomarkers/blood , Critical Care , Female , Hospitalization , Humans , Kynurenine/blood , Male , Middle Aged , Pandemics , Prognosis , SARS-CoV-2 , Tryptophan/blood
SELECTION OF CITATIONS
SEARCH DETAIL